Recapture of dispersing bark beetle *Ips typographus* L. (Col., Scolytidae) in pheromone-baited traps: regression models

P. Zolubas and J. A. Byers
Department of Ecology, Animal Ecology, Lund University, Lund, Sweden

Abstract: Parent (re-emerged) spruce bark beetles (*Ips typographus* L., Col.; Scolytidae) beginning a second host-seeking flight were collected in pheromone-baited traps. These beetles were marked with fluorescent powder of different colors and released from a point source (9–16 June 1989) within a spruce, *Picea abies* L., forest (Jurbarkas forest district, Lithuania). Some of the marked beetles were recaptured with pheromone-baited traps in two experiments: (1) traps at 10 m and (2) traps 30, 60, 90, and 120 m distances from the release point. Of 5920 and 5030 beetles that took flight in the two experiments, average recapture rates were 5.64 ± 1.17% (± SEM) on traps at 10 m distance, and 1.62 ± 0.21, 0.88 ± 0.23, 0.27 ± 0.08, and 0.03 ± 0.03% on traps at the respective distances from 30 to 120 m. Parameters of several regression models were fitted with the Simplex algorithm (SYSTAT statistical software) to recapture data. The best fitting models were those of power, and an exponential form. A discussion of the biological meaning of certain coefficients in the equations is presented with regard to bark beetle dispersal.

1 Introduction

One of the most common methods for studying insect dispersal is the recapture of marked members of a population released from a single point in space and time. Quantitative information concerning dispersal plays an essential role in the evaluation of pest control (Joyce, 1976). The dynamics of bark beetle infestations and damage in forest stands are largely dependent on short-range movements of beetles under the canopy (Botterweg, 1982; Anderbrant, 1985; Sanders, 1984, 1987; Gries, 1985; Zumpt, 1990, 1992). The dispersal of spruce bark beetle (*Ips typographus* L.) is of interest since it is a major pest of Norway spruce, *Picea abies* L., in Europe (Vitte, 1989). In this paper dispersal of *I. typographus* after release from a point source in the forest is analysed with several regression models.

2 Materials and methods

Two experiments were conducted during the flight period of 'parent' (re-emerged) spruce beetles in the Jurbarkas forest district (9–16 June 1989, western Lithuania). Weather conditions on the test days were favorable for beetle flight (above 22°C and wind less than 1.5 m/s). Beetles used in the experiments were collected from cross-barrier traps baited with 'Ips lure' dispensers (Celamerck, Germany). The trap was made of two sheets of polyethylene plastic (0.5 mm x 26 cm x 40 cm), inserted between an upper and lower cross-brace of steel wires to form four vanes that were placed over a plastic funnel (26 cm diameter) and collection vial. The traps were suspended at 1.7 m height by a pole driven diagonally into the ground. The 'Ips lure' dispenser consisted of a polyethylene bag containing pheromone components that was as efficient in attracting beetles as baits known to release approximately 50 mg of 2-methyl-3-buten-2-ol, 1 mg of (S)-cis-verbenol and 0.1 mg ipsdienol per day as measured by weight loss (unpubl. results).

In the first experiment, beetles were released 10 m from one cross-barrier trap baited with pheromone (in order to avoid trap interaction) in a stand of spruce about 75–80 years of age. The direction from the release point to the trap was chosen in one of four cardinal directions at random for each test day. Beetles collected earlier in the day were dusted with fluorescent powder (at 14.00 each day with a different color) and then released in the test area from a small wooden platform, 0.5 m above the ground. Trapped beetles were collected the following day in the afternoon before releasing the next batch of beetles. Marked individuals were counted in the laboratory where they were clearly distinguishable from unmarked beetles under normal fluorescent room lighting. A total of 5030 marked spruce bark beetles took flight from the platform over six 1-day tests.

In the second experiment at another site about 200 m away during the same period, 16 cross-barrier pheromone traps baited with 'Ips lure' dispensers were placed among four cardinal directions at 30, 60, 90 and 120 m away from the release point. Marking and collections were as in the first experiment. A total of 5920 beetles flew away from the release platform during four 1-day tests.

The catches of marked beetles at various distances from the release point were fit empirically (SYSTAT statistical software, Wilkinson, 1990) to several non-linear equations forms, including logarithmic, reciprocal, power and others, that have been proposed as suitable for dispersal analysis (Ito and Miyashita, 1965; Hartstack, 1971; Hartstack and Witz, 1981; Finch and Skinner, 1975; Freeman, 1977; Inoue, 1978; Taylor, 1978, 1980; Safranyik et al., 1992; Plant and Cunningham, 1991). Regression coefficients were calculated using a Simplex algorithm that employs an iterative direct search procedure (Wilkinson, 1990).

3 Results

Almost all marked beetles recaptured were caught within the first collection period (by the next day after they were released). In the first experiment, a few indi-
Recapture ratio data were averaged over all releases in both experiments. On average 8.4 ± 1.61% (+ SEM) of the marked beetles were recaptured for each 1-day release period. To check for radial symmetry of recapture rates, data were grouped by angular position form the release point into four groups, and Chi-square statistics computed to test for randomness. The distribution of catches showed no significant differences between catches in different directions (P = 0.9), indicating that beetles dispersed randomly. On average 5.64 ± 1.17, 1.62 ± 0.21, 0.88 ± 0.23, 0.27 ± 0.08 and 0.03 ± 0.03% of marked bark beetles were recaptured per trap at 10, 30, 60, 90 and 120 m distances from the release point, respectively (fig.).

Regression coefficients were calculated on two different sets of recapture data: (1) for data from the second experiment (traps 30-120 m from release point); and (2) for data pooled from both experiments (10-120 m distance). It is reasonable to pool data of both experiments as traps at each distance from the release point caught only a small proportion of the marked beetles (5.64% or less) and thus should not significantly affect the catches at other distances. Regression coefficients also were calculated on published data from similar experimental designs, such as data on *I. typographus* recapture at distances from 50 to 300 m (results from 2 years as calculated from fig. 2 in ZUMR, 1992) and from *Dendroctonus ponderosae* (2 years recapture data at distances from 10 to 250 m (table and fig. in SAFRANYIK et al., 1992). The equations with the best fit (table) were those of ZUMR (1992) for *I. typographus* as well as for data from SAFRANYIK et al. (1992) for *D. ponderosae* (table).

Discussion

Dispersal analysis can be performed by three general methods. The first uses statistical analysis to describe the insect distribution, for example, dispersal of fruit flies (BAKER et al., 1986; FLETCHER, 1974; FLETCHER and ECONOMOPOULOS, 1976; PLANT and CUNNINGHAM 1991). The second method uses empirical models of insect population dispersal and attempts to fit the data to a regression curve. For example, TAYLOR (1978) found that none of the earlier proposed models for predicting density of released individuals at various distances from a source could adequately fit dispersal data from several insect species. TAYLOR (1980) proposed a general form of power regression that was later used by other authors (SAFRANYIK et al., 1992; PLANT and CUNNINGHAM, 1991). The third methodological category, the so-called fundamental models, consists of a system of differential equations that attempts to represent assumptions about the biological properties underlying the observed behavior. These models are mathematically complex and usually are based on diffusion equations. The models have been applied to several insect species with various modifications (AIKMAN and HEWITT, 1972; OKUBO, 1980; RUDD and GAN-
I. podendron lineatum were recaptured in pheromone traps well. The model of
motion that released beetles simply spread radially and
percentages of recaptured beetles, for examples
power regression (model 2) estimates the dispersal dis-
-canopy (our experiments) these possibilities are prob-
in a timber sort area with large quantities of susceptible
material (SHORE and MCLEAN, 1984, 1989).

As can be seen from the results of regression analyses,
power regression (model 2) estimates the dispersal dis-
tance expected for reemerged spurge bark beetles quite
well. The model of HARTSTACK and WITZ (1981), which
can be considered as a type of power regression, also
fits the data well. The equation is based on the assump-
tion that released beetles simply spread radially and
'dilute' in an ever increasing area (WESLIEN and LINDELÖW, 1990). Two characteristics of traps are supposed
to be evaluated with this equation: coefficient a was
called 'trap efficiency', and coefficient b the 'effective
radius' of the trap. Trap efficiency (coefficient a) is low
in I. typographus recapture experiments, and this cor-
responds to a low recapture rate and is consistent with
the assumption that re-emerged beetles should have a
lower dispersal potential than emerged, overwintering
spruce bark beetles. Our trap efficiency corresponds
well with that of ZUMR's data (15.9 and 14.3% respectively,
table), since traps of similar construction were used.

The effective radius of our trap (coefficient b in the
equation of HARTSTACK and WITZ, 1981) was equal to
14.7 m (table) as obtained from the pooled data and
indicates that single pheromone traps uniformly influ-
enced beetles in areas up to 135 m from the release point
without either overlap or large gaps between effective
trap radii. The effective trap radius was 65.2 or 95.9 m
as calculated from each year of ZUMR's data (table). If
the attractive radius really is 95.9 m, then there must
have been an interaction between trap groups because
they were placed at 100 m intervals (ZUMR, 1992). The
larger attraction radius of 95.9 m calculated by ZUMR
may have been larger than the 14.7 m radius we cal-
culated because he used groups of four traps at each
position compared to our single traps; also there could
have been pheromonal affects of surrounding trees
colonized by attracted bark beetles. Differences in the
attraction radius also may be due to stand and environ-
mental conditions. Another obvious difference is that
we used re-emerged beetles (attracted to pheromone
baits after the first flight period) while ZUMR (1992) used
emerged beetles (reared from host logs). The effective
attraction radius as calculated by regression methods
above must be distinguished from the effective attrac-
tion radius obtained by comparison of trap catches on
pheromone-baited and unbaited traps (Byers et al.,
1989; Byers, 1993).

In model 3 (Taylor, 1978) and more complicated
derivative models (Taylor, 1980), biological meaning
was attributed to coefficient c: where c<2, c>2, or
c = 2 depending on whether there is attraction, repul-
sion, or no interactions between dispersing insects,
respectively (Taylor, 1978). Coefficient estimates indi-
cate that there should be attraction between both species
of dispersing bark beetles, (c<2 in pooled data set,
table), but it is more likely that this effect is due to
the attraction of beetles to trees, not due to attraction
between flying individuals as proposed by Taylor. In
model 3, c = 2.6 as calculated from data of experiment
two (table), which suggests that there is a repulsion
among dispersing beetles (but this is unlikely). However,
coefficient b is very close to zero, causing the equation
to become a simple exponential form and the biological
meaning of coefficients is thus uncertain. Interestingly,
the c coefficients in models 2 and 3 are similar for both
species and may represent a more general measure of
dispersion for bark beetles.

More complex exponential models (Taylor, 1980)
with more coefficients were not used because there were
not enough sampling distances in our experiment to
yield reliable results with the Simplex method. Fur-
thermore, the more complex the model, the more variations in coefficient values are possible that give essentially the same relationship. Also, complex regression models lead to confusion regarding biological interpretation and imply that descriptive models are of limited usefulness and unlikely to apply to a wide range of conditions (STINNER et al., 1983). For example, the models are not applicable to situations where insects do not originate from a point source.

Acknowledgement

This study was supported in part by funds from the Nordic Forest Research Cooperation Committee and Swedish Council for Forestry and Agricultural Research (SJFR).

References

HARTSTACK, A. W., 1971: Determination of trap spacings required to control an insect population. J. Econ. Ent. 64, 1090–1100.

—, 1987: Studies on the flight-activity of the bark beetle Ips typographus in deciduous forests and in the field J. Appl. Ent. 103, 240–249.

Recapture of dispersing bark beetles

Authors’ addresses: Dr. PAULIUS ZOLOBAS, Lithuanian Forest Research Institute, Girionys, 4312 Kaunas, Lithuania; Dr. JOHN A. BYERS, Department of Ecology, Animal Ecology, Lund University, S-223 62 Lund, Sweden