
Compul. Biol. Med. Vol. 23, No. 2, pp. 167-176. 1993
Printed in Great Britain

00104825193 %.00+ .00
@ 1993 Pergamon Ress Ltd

RANDOMIZATION ALGORITHMS IN BASIC FOR
EXPERIMENTAL DESIGN

JOHN A. BYERS
Department of Ecology, Animal Ecology, Lund University, S-223 62 Lund, Sweden

(Received 12 February 1992; in revised form 5 October 1992; received for publication
15 October 1992)

Abstract-Six BASIC programs for randomization of treatments with respect to space and time
are presented. Program 1 is used to obtain randomization of several treatments in an equal
number of positions for any number of replicates such that identical treatments are not replicated
successively in the same position. Program 2 randomly assigns different treatments as specified in
a grid of any size either (a) without constraints or (b) so that similar treatments do not occur next
to each other either horizontally or vertically, or (c) horizontally, vertically, or diagonally.
Program 3 assigns from five to 100 different treatments in equal proportions to a grid of specified
size with treatments separated as in Program 2 (c) above. Program 4 randomly assigns any
number of different treatments in equal proportions to a Latin square-like grid containing row
and column cells with a multiple number of the treatments such that no identical treatments are
replicated successively in the same row, column, or both row and column. Program 5 produces
Latin squares of letters with unique numbered subscripts randomized. Program 6 makes
Grew-Latin squares with an odd number of letters per side. These programs will aid in
randomization of treatments within positions and replicates when a degree of uniformity or
spacing of treatments is desired in order to increase the power of statistical tests. Examples of
program output are discussed for tests with bark beetle pheromone components.

BASIC Algorithms Randomization Sampling Experimental design
Scolytidae Pheromone

I N T R O D U C T I O N

Textbooks of experimental design and sampling discuss algorithms for treatment random-
ization and sampling at random [I-91. However, only a few general algorithms are
presented and none of these are implemented by computer. Recently, Byers [lo]
implemented five algorithms on the personal computer for use in randomization of
treatments and for sampling at random. The computer-programmed algorithms in the
BASIC language allowed construction of a Latin square of any size, or a quasi-Latin
square with equal numbers of replicated treatments for each row and column. The
algorithms also included a method for simple randomization of treatments and positions
for any number of replicates. In addition, random placement of equal numbers of
different treatments within a grid could be done in such a way so that identical treatments
were separated both horizontally and vertically from one another by other treatments
(spacing of treatments).

In this paper additional algorithms are presented, that are used to randomize
treatments such that a degree of uniformity or spacing results among identical treat-
ments. Some of the algorithms here allow even more spacing of identical treatments in a
grid to include horizontal, vertical and diagonal separation. Also, certain algorithms can
be used with unequal numbers of replicates of several treatment types (including no
treatment), with or without the spacing function.

The creation of these algorithms for spacing identical treatments was inspired by
experiments with insect pheromones. It seems advisable when testing pheromone
component blends in the field to distribute the treatments more uniformly throughout an
area if the chemical dispensers have high release rates, so as not to concentrate

responding individuals at unnatural densities in certain places. It is also well known that
densities of flying insects may vary dramatically over an area [l l , 121. Thus, it is logical to
place treatments consisting of traps releasing different blends of behavioral chemicals
more uniformly, but still at random, over an area. This would ensure that all treatment
blends were fairly presented to the flying insects and also would minimize the risk of
confusion by high concentrations of pheromone in certain regions, compared with some
purely random placements of blends.

The algorithms here are presented as examples for use in randomization of treatments.
However, in many cases it is also possible to use the algorithms for sampling at random
but with a degree of uniformity (i.e. ensuring that the area is more regularly sampled,
similar in principle to stratified sampling [13]). Another consideration is that the
examples of two-dimensional grids (space by space intersection) can be imagined
alternatively as a spatial-position by time-period intersection. The easy and efficient use
of the six randomization algorithms in BASIC (Figs 1-6) should help improve the design
of scientific experiments and allow more efficient analysis of the results.

M E T H O D S

The six programs operate in the BASIC language (BASICA, (C) 1983 or
QuickBASIC 4.0, (C) 1982-1987 Microsoft Corp.) on the IBM, PC, XT, AT or
compatible computer, although they could be easily modified for other computer brands
using other versions of BASIC because of the restricted use of commands and simple
output statements. Multiple statements (separated here by colons) can be placed on
successive lines if required. However, statements following IF-THEN conditional tests
must be repositioned with care.

R E S U L T S A N D DISCUSSION

Program 1 : Simple treatmentlposition randomization with no repeats between replicates

The program (Fig. 1A) will generate a set of randomly selected treatments (1 to any
number of treatments) for the same number of positions for any number of experimental
replicates. This algorithm is similar to program 1 described earlier [lo] except that no
treatment can be repeated between successive replicates. This constraint causes a degree
of "spacing", either through time or spatially (if the row by column array represents a
grid of positions).

One enters the number of treatments (8), which is equal to the number of positions
(8), for any number of replicates (16), and a number which serves as the random seed.
The random seed number will determine the starting point in the sequence of random
numbers and thus it should not be the same if the experiment is repeated. For each row
(treatment) and each column (replicate) the computer picks at random a number
(representing the position) from an array (such that the number is no longer available for
selection). During subsequent replicates, the algorithm checks each treatment to see if
the previous replicate has the same position selected, if so, then further selections at
random are tried until a non-matching position is found. Output of the program for eight
treatments (A-H) and positions (1-8) replicated 16 times is shown in Fig. 1B.

Program 2: Spaced treatments proportioned as specified in any row by column grid

The treatments can be placed either (a) purely at random, (b) spaced so that identical
treatments do not occur vertically or horizontally next to each other, or (c) neither
vertically, horizontally or diagonally. This program (Fig. 2A) is used to place different
treatments in equal or unequal proportions in a grid. The grid-side dimensions can be
varied in size. The program also checks that the number of desired treatments and their
replicates do not exceed the number of grid positions. If the total number of different
treatment replicates is less than the number of grid positions, then zeros will be placed in
the extra positions at random.

Randomization algorithms in B A S I C

1 0 CLS : PRINT "SIMPLE TREATMENT/POSITION RANDOMIZATIONn
2 0 PRINT "WITH NO REPEATS BETWEEN REPLICATES"
3 0 INPUT "ENTER NUMBER OF TREATMENTS/POSITIONSm: N
4 0 INPUT "ENTER NUMBER OF REPLICATES": R
50 INPUT "ENTER A SPECIFIC NUMBER FOR-A SPECIFIC RANDOM SEQUENCE^; RN
6 0 D I M A(N, R): RN - RND(-RN)
7 0 FOR Z - 0 T O R - 1: W - -1
8 O W - W + 1
9 0 V - -1: X - INT(RND * N) + 1
1 0 0 V - V + 1: I F A N . Z) - X THEN 9 0
1 1 0 I F V - W THEN 1 3 0 -

.

1 2 0 GOT0 100 - - - -..

1 3 0 A(W, Z) - X: I F Z > 0 THEN 1 4 0 ELSE 1 6 0
1 4 0 I F A(V, Z) - A(V, Z - 1) THEN 1 5 0 ELSE 1 6 0
1 5 0 FOR EE - 0 TO W: A(EE. Z) - 0: NEXT: W - -1: GOT0 80
1 6 0 I F W < N - 1 THEN 8 0
1 7 0 NEXT Z: PRINT "T REPS"
1 8 0 FOR P - 0 TO N - 1: PRINT CHRSfP + 65):
i9o FOR E - o TO R - i: PRINT USING m ~ ~ ~ m ; ' ~ (~ , E);
2 0 0 NEXT E: PRINT : NEXT P

SIMPLE TREATMENT/POSITION RANDOMIZATION
WITH NO REPEATS BETWEEN REPLICATES
ENTER NUMBER OF TREATMENTS/POSITIONS? 8
ENTER NUMBER OF REPLICATES? 1 6
ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE? 5
T REPS
A 3 5 2 1 8 3 5 4 7 6 3 7 5 1 4 6
0 7 1 8 2 6 4 6 1 3 4 7 6 8 5 6 7
C 5 7 6 5 7 2 3 6 1 7 2 5 7 4 8 4
D 2 4 3 8 5 1 7 5 2 3 6 3 2 7 2 1
E 6 3 7 4 2 7 2 3 4 1 8 1 4 3 7 2
F 8 6 1 7 1 6 1 8 5 8 5 4 1 6 1 8
6 4 2 4 6 3 5 8 7 6 2 1 8 6 8 5 3
H I 8 5 3 4 8 4 2 8 5 4 2 3 2 3 5

Fig. 1. (A) Listing of B A S I C program used to randomly assign treatments to positions such that
no identical treatments are replicated successively in the same position. (B) Printed output of
program on computer screen of an IBM PC or compatible computer (output may differ due to

differences in the random number generator algorithm used by the version of B A S I C) .

One enters the number of columns (12) and the number of rows (6) and the program
displays the number of grid positions (72). Then the number of different treatments
desired is entered (5). For each treatment, a number of replicates is entered (10) that
cannot be more than the number of grid positions remaining. A random seed is entered
to allow different random selections for different experiments. Output of the program
for five treatments (1-5) each replicated 10 times and with 22 positions empty is shown in
Fig. 2B.

Program 3: Five to 100 very spaced treatments in equal proportions in any size grid

This program (Fig. 3A) is similar to program 2 part (c), but it is much more efficient at
finding a solution to the spacing of treatments. The grid sides can be of any dimensions
but the number of grid positions must coincide with the total number of tests comprised
of the different treatments, all equally proportioned. The spacing of identical treatments
occurs in all possible directions, vertically, horizontally and diagonally. To illustrate, one
can suppose that bark beetles, Dendroctonw brevicomis, will be tested for their response
to a grid of 120 holes releasing volatile attractants. The holes are drilled in a plywood
board and small vials containing chemicals are placed over each hole on the bottom side.
Five treatments of 24 vials each are tested: treatment no. 1 is empty, no. 2 has a pine tree
compound (myrcene), no. 3 has myrcene and a pheromone component (exo-brevicomin)
produced only by females, no. 4 has myrcene and a male-produced pheromone
component (frontalin), and no. 5 has all three chemicals. These chemicals are synergistic
in attracting D. brevicomis to a tree or to the board [14]. However, the question is
whether it is possible for the beetles to discriminate between the treatment holes by

10 CLS : PRINT "SPACED TREATMENTS PROPORTIONED AS SPECIFIED I N ANY ROW";
2 0 PRINT "*COLUMN GRID"
3 0 PRINT "ENTER 1: TREATMENTS PLACED PURELY AT RANDOM";
4 0 PRINT "ENTER 2: SAME TREATMENTS NOT ALLOWED HORIZONTALLY OR VERTIC";
5 0 PRINT "ALLY": PRINT "ENTER 3: SAME TREATMENTS NOT ALLOWED HORIZONTA";
6 0 CLEAR : INPUT "LLY, VERTICALLY OR DIAGONALLYw: SP: SP - INT(SP)
7 0 I F SP >- 1 OR SP <- 3 THEN TR - 0: GOT0 80 ELSE 3 0
80 INPUT "ENTER NUMBER OF COLUMNS": C
9 0 INPUT "ENTER NUMBER OF ROWS": R:
100 PRINT "TREATMENTS MUST BE LESS THAN COL. *ROWS - "; C R: CR - C R
110 INPUT "ENTER NUMBER OF TREATMENTS"; N: D I M TR(N + 1): D I M TN(N + 1)
1 2 0 I F N > CR OR N < 1 THEN PRINT "INCORRECT NUMBER OF TREATMENTS': GOT0 3 0
1 3 0 I F N < 5 AND SP > 1 THEN PRINT "TREATMENTS OF 4 MIGHT NOT BE SPACED"
1 4 0 FOR W - 1 TO N: PRINT "> ENTER NUMBER OF REPLICATES FOR TREATMENT In; W;
1 5 0 INPUT TR(W): TR - TR(W) + TR: PRINT "#LEFT-"; CR - TR;
1 6 0 I F TR > CR THEN PRINT "TOO MANY REPLICATES - WON'T WORK': GOT0 3 0
1 7 0 NEXT: PRINT : I F CR - TR - 0 THEN 1 9 0
180 PRINT CR - TR; "CELLS WITH NO TREATMENTn: TR(N + 1) - CR - TR
1 9 0 TN(N + 1) - TR(N + 1): D I M A(R + 1, C + 1)
2 0 0 FOR W - 0 TO R + 1: A W 0 = 500: NEXT
2 1 0 FOR W - 0 TO C + 1: A101 W] - 500: NEXT
2 2 0 FOR W - 1 TO N + 1: TN(W) - TR(W): NEXT
2 3 0 INPUT "ENTER A SPECIF IC NUMBER FOR A SPECIFIC RANDOM SEQUENCE"; RN
2 4 0 X - RND -RN): I F TR(N + 1) > 0 THEN NC - N + 1 ELSE NC - N
2 5 0 Q - INT[RND NC) + 1: A$ - INKEY$: I F A$ - CHRT(27) THEN EN0
2 6 0 I F TR(Q) < i THEN GOT0 2 5 0
2 7 0 H - INT(RND R) + 1: J - INT(RND * C) + 1
2 8 0 TRY - TRY + 1: I F TRY - 100 THEN GOSUB 290: GOT0 2 5 0 ELSE 3 2 0
2 9 0 FOR P - 1 TO N: TR(P) - TN(P): NEXT: TRY - 0: CT - 0
3 0 0 TY - TY + 1: LOCATE , 1: PRINT '[Esc] TO BREAK: TRY I": TY;
3 1 0 FOR W - 1 TO R: FOR Z - 1 TO C: A(W, Z) - 0: NEXT: NEXT: RETURN
3 2 0 I F A(H, J) > 0 THEN GOT0 2 5 0
3 3 0 I F SP - 1 THEN 3 9 0
3 4 0 I F A H - 1 J - Q OR A H + 1 J - Q THEN 2 5 0
3 5 0 I F A[", J : I] - Q OR A[H, J ; l] - Q THEN 2 5 0
3 6 0 I F SP - 2 THEN 3 9 0
3 7 0 I F A(H - 1, J - 1) - Q O R A (H + 1, J - 1) - 0 THEN 2 5 0
3 8 0 I F A(H - 1, J + 1) - Q O R A (H + 1, J + I) - Q THEN 2 5 0
3 9 0 TR(Q) - TR(Q) - 1: TRY - 0
4 0 0 A(H, J) - Q: CT - CT + 1: I F Q - N + 1 THEN A(H, J) - 0
4 1 0 I F CT <> CR THEN 2 5 0
4 2 0 PRINT : FOR W - 1 TO R: FOR Z - 1 TO C
4 3 0 PRINT USING "##Im; A(W, Z); : NEXT Z: PRINT : NEXT W

SPACED TREATMENTS PROPORTIONED AS SPECIFIED I N ANY ROW*COLUHN GRID

ENTER 1: TREATMENTS PLACED PURELY AT RANDOM
ENTER 2: SAME TREATMENTS NOT ALLOWED HORIZONTALLY OR VERTICALLY

ENTER 3: SAME TREATMENTS NOT ALLOWED HORIZONTALLY, VERTICALLY OR
DIAGONALLY? 3
ENTER NUMBER OF COLUMNS? 1 2
ENTER NUMBER OF ROWS? 6
TREATMENTS MUST BE LESS THAN COL.*ROWS - 7 2
ENTER NUMBER OF TREATMENTS? 5
> ENTER NUMBER OF REPLICATES FOR TREATMENT # 1 ? 10
#LEFT- 6 2 > ENTER NUMBER OF REPLICATES FOR TREATMENT 1 2 ? 1 0
#LEFT- 5 2 > ENTER NUMBER OF REPLICATES FOR TREATMENT 1 3 ? 10
#LEFT- 4 2 > ENTER NUMBER OF REPLICATES FOR TREATMENT 1 4 ? 1 0
#LEFT- 3 2 > ENTER NUMBER OF REPLICATES FOR TREATMENT 1 5 7 10
#LEFT- 22 -

2 2 CELLS WITH NO TREATMENT
ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE? 1

Fig. 2. (A) Listing of B A S I C program used to randomly assign any number of different
treatments in specified proportions in any size grid. The treatments can be placed at random with
(1) no constraints, or with spacing so that similar treatments do not occur either (2) horizontally
or vertically to each other or (3) horizontally, vertically, or diagonally to each other. (B) Printed
output of program on computer screen of an IBM PC or compatible computer (output may differ
due to differences in the random number generator algorithm used by the version of B A S I C) .

Randomization algorithms in BASIC

A.

1 0 CLS : PRINT " 5 TO 1 0 0 VERY SPACED TREATMENTS (SAME TREATMEN
2 0 PRINT "NEXT TO EACH OTHER) I N EQUAL PROPORTIONS I N ANY S I Z E
3 0 DEFINT A-Z: INPUT "ENTER NUMBER OF ROWSn; R
4 0 INPUT "ENTER NUMBER OF COLUMNS"; L
5 0 INPUT "ENTER 5 TO 1 0 0 TREATMENTS"; N
6 0 I F N >- 5 AND N <- R * L AND N <- 1 0 0 THEN 8 0
7 0 PRINT "TREATMENTS MUST BE FROM 5 TO 1 0 0 AND <": R * L : GOT0
8 0 I F INT(R * L / N) - R * L / N THEN 1 1 0
9 0 PRINT "ROWS*COLUMNS NOT EVENLY D I V I S I B L E "
1 0 0 PRINT "BY NUMBER OF TREATMENTS, TRY AGAIN": GOT0 3 0
1 1 0 D I M A(R + 1, L + 1): D I M C (l 0 l)
1 2 0 PRINT "ENTER A SPECIF IC NUMBER FOR A SPECIFIC RANDOM ";
1 3 0 INPUT "SEQUENCE"; RN: RN - RND(-RN)
1 4 0 FOR W - N + 1 TO 100: C(W) - R * L / N: NEXT
1 5 0 FOR W - 1 TO R: FOR Z - 1 TO L
1 6 0 A(W, Z) - INT(RND * N) + 1
1 7 0 I F A W t 1 Z A W , Z O R A W + l , Z - 1 A W Z THEN
1 8 0 I F AIW - 1: Z j AIW. Z j OR AIW - 1, Z - l j A[W: Z j THEN
1 9 0 I F A W Z + 1 A W , Z O R A W - 1 , Z + 1 A W Z THEN
2 0 0 I F d w : z - i j : AIw, z j OR A t w t 1, z + i j AIw: z j THEN
2 1 0 FOR D - 1 TO N: I F A(W, Z) - D THEN C(D) - C(D) + 1
2 2 0 NEXT D: NEXT Z: NEXT W
2 3 0 M - 0
2 4 0 M - M + 1: I F M - N + 1 THEN 3 4 0

TS NEVER"
GRID"

2 5 0 I F C(M) ; R * L / N THEN P-- M: C(M) - C(M) + 1: GOT0 2 7 0
2 6 0 GOT0 2 4 0
2 7 0 J - J + 1
2 8 0 I F C(J) > R * L / N THEN C(J) - C(J) - 1: Q - J: J - 0: GOT0 3 1 0
2 9 0 I F J - N THEN J - 0: GOT0 3 1 0
300 GOT0 2 7 0 ... ~- - - -

3 1 0 FOR W - 1 T O R : FOR Z - 1 TO L: I F T - 1 THEN 3 3 0
3 2 0 I F A(W, Z) - Q THEN GOSUB 3 6 0
3 3 0 NEXT Z: NEXT W: T - 0: GOT0 2 3 0
3 4 0 FOR W - 1 TO R: FOR Z - 1 TO L: PRINT USING "#I#"; A(W, Z);
3 5 0 NEXT Z: PRINT : NEXT W: END
3 6 0 I F A(W + 1, Z)
3 7 0 I F A W - 1. Z
3 8 0 I F A W, Z + 1
3 9 0 I F A/W, Z - 11 - P OR A(W + 1, Z + 1) - P THEN RETURN
4 0 0 A(W, Z) - P: T - 1: RETURN
B.

5 TO 1 0 0 VERY SPACED TREATMENTS (SAME TREATMENTS NEVER
NEXT TO EACH OTHER) I N EQUAL PROPORTIONS I N ANY S I Z E GRID
ENTER NUMBER OF ROWS7 8
ENTER NUMBER OF COLUMNS7 1 5
ENTER 5 TO 1 0 0 TREATMENTS7 5
ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE7 5

2 5 4 2 4 3 5 4 2 5 2 5 . 4 1 5

Fig. 3. (A) Listing of B A S I C program used to randomly assign five to 100 different treatments in
equal proportions in a grid of any size with spacing so that similar treatments do not reside either
horizontally, vertically, or diagonally to each other. (B) Printed output of program on computer
screen of an IBM PC or compatible computer (output may differ due to differences in the random

number generator algorithm used by the version of B A S I C) .

entering certain holes and becoming trapped in the vials? It may be desirable to even out
the variation of position with respect to treatment on the board.

To construct such a test grid, one enters the number of rows (8), the number of
columns (15), and the number of treatments (5) as well as the random seed. Since it is not
possible to space (vertically, horizontally, and diagonally) four or fewer treatments in
equal proportions, the program requires at least five treatments. The algorithms are
similar to those described earlier ([lo], Program 5) except that diagonal separation has
been added. As can be seen in Fig. 3B, each treatment type is represented more
uniformly over the board.

J . A. BYERS

A.

1 0 CLS : PRINT "ANY Y TREATMENTS EQUALLY PROPORTIONED I N LATIN " *
2 0 PRINT "SQUARE-LIKE GRIDw: PRINT "SPACED OR NOT SPACED": DEFIN~ A-Z
3 0 INPUT "ENTER NUMBER OF COLUMNS"; C: INPUT "ENTER NUMBER OF ROWS"; R
4 0 INPUT "ENTER NUMBER OF TREATMENTS"; N: G - N 10: I F N < 2 THEN 3 0
5 0 I F INT(R / N) = R / N AND INT(C / N) - C / N THEN 7 0
6 0 PRINT "COLUMNS OR ROWS NOT EVENLY D I V I S I B L E BY TREATMENTSm: GOT0 3 0
7 0 INPUT "ENTER 1 FOR SPACED TREATMENTS, 2 FOR NO SPACING"; S
8 0 I F S - 2 THEN 1 0 0 ELSE PRINT STRINGf(50, 95)
9 0 INPUT "SPACING: ENTER 1 FOR COLUMN, 2 FOR ROW, 3 FOR BOTH"; U
l o o DIM A(R, c): DIM e(c): DIM c(c): DIM D(R): DIM E(R)
110 INPUT "ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE"; RN
1 2 0 RN - RND(-RN): M - 0: V - 0
1 3 0 FOR I - 1 TO C STEP C / N: M - M + 1: F O R K - 1 TO C / N: V - V + 1
1 4 0 C(V) - M: NEXT: NEXT: REM MAKE ARRAY OF TREATMENTS
1 5 0 J - C: M - 0: V - 0: T - 0: REM RANDOMIZE COLUMN TREATMENT ARRAY
1 6 0 FOR I - 1 TO C
1 7 0 X - INT(RND J + 1): T - T + 1: I F T > G THEN EXIT FOR
1 8 0 I F U <> 1 THEN I F S - 1 AND I > 1 THEN I F B (1 - 1) - C(X) THEN 1 7 0
1 9 0 B(1) - C(X): J - J - 1
2 0 0 FOR K - X TO J: C(K) - C(K + 1): NEXT K: NEXT I: I F T > G THEN 1 2 0
2 1 0 FOR I - 1 TO R STEP R / N: M - M + 1: FOR K - 1 TO R / N: V - V + 1
2 2 0 E(V) - M: NEXT: NEXT: REM MAKE ARRAY OF TREATMENTS
2 3 0 J - R: REM RANDOMIZE ROW TREATMENT ARRAY
2 4 0 FOR I - 1 TO R
2 5 0 X - INT(RND * J + 1): T - T + 1: I F T > G THEN EXIT FOR
2 6 0 I F U <> 2 THEN I F S - 1 AND I > 1 THEN I F D (I - 1) - E(X) THEN 2 5 0
2 7 0 D(1) = E(X): J - J - 1
2 8 0 FOR K - X TO Jc E(K) - E(K + 1): NEXT K: NEXT I: I F T > G THEN 1 2 0
2 9 0 FOR Z - 1 TO R: FOR W - 1 TO C: A(Z, W) - D(Z) + B(W)
3 0 0 I F A(Z, W) > N THEN A(Z. W) - A(Z. W) - N
3 1 0 PRINT USING "W"; A(Z, W); : NEXT: PRINT : NEXT

ANY Y TREATMENTS EQUALLY PROPORTIONED I N LATIN SQUARE-LIKE GRID

SPACED OR NOT SPACED
ENTER NUMBER OF COLUMNS? 6
ENTER NUMBER OF ROWS? 6
ENTER NUMBER OF TREATMENTS? 3
ENTER 1 FOR SPACED TREATMENTS, 2 FOR NO SPACING? (2,1,1,1)

ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE? I
2 2 3 3 1 1 2 2 3 3 1 1 3 1 . 2 3 1 2 2 3 1 2 3 1
3 3 1 1 2 2 3 3 1 1 2 2 1 2 3 1 2 3 3 1 2 3 1 2
1 1 2 2 3 3 1 1 2 2 3 3 1 2 3 1 2 3 2 3 1 2 3 1
2 2 3 3 1 1 2 2 3 3 1 1 2 3 1 2 3 1 1 2 3 1 2 3
3 3 1 1 2 2 3 3 1 1 2 2 2 3 1 2 3 1 3 1 2 3 1 2
1 1 2 2 3 3 1 1 2 2 3 3 3 1 2 3 1 2 1 2 3 1 2 3

N o t Spaced Column Spaced Row Spaced B o t h Spaced

Fig. 4. (A) Listing of BASIC program used to randomly assign any number of different
treatments in equal proportions in a Latin square-like grid of any size. Treatments may be spaced
(or not) such that no identical treatments are replicated successively in the same (1) column, (2)
row, or (3) both column and row. The input values are shown in parentheses in the order
necessary to generate the four possible spacings. (B) Printed output of program on computer
screen on an IBM PC or compatible computer for the four possible spacings. Only one of the
possible spacings will actually be output during any program run, but all four are shown here
(output may differ due to differences in the random number generator algorithm used by the

version of BASIC).

Program 4: Any number of treatments equally proportioned in Latin square-like grid
with spacing or not between identical treatments

This program (Fig. 4A) provides a column by row array of positions or
(positions x replicates) in which a certain number of different treatments are replicated
equally to the extent allowed by the number of places in the column and row. Identical
treatments may occur side by side or can be spaced so that no vertical, or horizontal, or
vertical and horizontal positions can be filled by the same treatment.

One enters the number of columns (6), rows (6), and treatments (3) as well as the
random seed number. The program checks to see if the number of treatments can divide

Randomization algorithms in BASIC 173

evenly into both the rows and the columns, if not, then new input must be entered. The
option of spacing or not is also entered. The algorithm is similar to that described earlier
[lo] in which the first step is to randomize both a row and a column array that each have
the appropriate repetitions of the different treatments. However, in the option for the
spacing of identical treatments, the algorithm must check the row array and/or the
column array to see if the previous selection in the array is the same treatment, if so then
another selection is made until a different treatment is found. Once these two arrays are
randomized (with or without spacing) then their addition proceeds. The value for each
row by array intersection cell is the sum of the appropriate cells in the two arrays, unless
the sum is greater than N (the number of different treatments), in which case the value is
the sum minus N. Output (Fig. 4B) shows the treatments evenly proportioned across the
rows (replicates) and columns (positions) for the four cases: no spacing, spacing within
columns, spacing within rows, and spacing both vertically and horizontally.

Program 5: Latin square with randomized non-repeated subscripts

The program (Fig. 5A) first constructs a Latin square of letters using the algorithm
described in program 4 above. Then for each letter (A, B, C . . .) an array of numbers is
randomized as were the initial row and column arrays when constructing the Latin
square. When the appropriate letter (e.g. A) is found in a row then the next successive
number in the number array is used as the letter's subscript. After all rows have been
searched then a new number array is randomized and the next letter (e.g. B) is searched
for in each row until all letters have been dealt with.

One enters the number of treatments (10) which correspond to the various letters and
the number of subscripts for each letter, as well as the random seed. For example, one
may test for behavioural synergism between two compounds taken from four candidate
pheromone components. There are 6 possible combinations plus 4 single components
that can compose 10 different blends (treatments A-J). One also could release 10
different rates of the volatile components (subscripts 1-10). The rows can represent 10
different positions in the field and each column can be each of 10 test days. The catch on
traps containing the blends would then be analysed for differences with respect to blend
and dosage.

The Latin square algorithm used here can generate all 12 squares of 3 x 3 letters, but
not all possible Latin squares of more letters than three per side. For Latin squares of
side N = 4 (4 x 4) the algorithm generates N!(N- I)! = 144 different squares, for a 5 x 5,
2880 squares, and for a 6 x 6, 86400 squares [9]. There are actually 576 different 4 x 4
and 161 280 different 5 X 5 squares [4, 81. Thus not all possible Latin squares can be
obtained with the algorithm, but there is a sufficiently large sample from which to select a
choice at random such that no significant experimental bias should result.

Program 6: Greco-Latin square

The program (Fig. 6A) will generate a Greco-Latin square in which every Latin letter
occurs once in each row and once in each column, and each Greek letter (represented
here by numbers instead) occurs once for each row and once for each column. In
addition, each Latin letter and Greek letter (number) occur only once together in the
square. Thus, for a Greco-Latin square of 5 x 5 there are 25 combinations of Latin letters
and numbers which can be placed in 25 positions. This means that there are 25! (about
lo2') permutations out of which some Greco-Latin squares must be found.

Kempthorne [9] says a Greco-Latin square of side 12 exists, although he gives no
solution or reference. He does say that Greco-Latin squares of even numbered sides
have not been enumerated except as he shows for a side of 4 (and possibly for a side of
12). It can be seen that in Latin squares of sides N=3 ,4 ,5 or more the number of 45"
diagonals made from two or more quadrants number N+ j, where j is O,1,2,3, . . . , so
that squares of odd numbered sides have an even j while even numbered sides have an
odd j. The 4-sided (j = 1) square is a special case, while Greco-Latin squares with even
numbered sides of 6 or more (j is odd and 3 or more) do not seem to exist.

1 0 CLS : DEFINT A-Z
2 0 PRINT "LATIN SQUARE WITH RANDOMI ZED NON-REPEATED SUBSCRIPTS"
3 0 INPUT "ENTER NUMBER OF TREATMENTS"; N: R - N: I F N > 2 6 THEN 3 0
4 0 PRINT "ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM";
5 0 INPUT " SEQUENCE"; RN: D IM B(N): D IM C(N): D IM D(N)
6 0 RN - RND(-RN): D IM A$ (N, N)
7 0 FOR I - 1 TO N: B(1) - I: C (I) - I: D(1) - I: NEXT I
8 0 J - N: REM RANDOMIZE ARRAY COLUMN
9 0 FOR I - 1 TO N
1 0 0 X - INT(RND J + 1 : B(1) - C(X): J - J - 1
i i o FOR I: - x T o J: c (K { - c(K + 1): NEXT K: NEXT I
1 2 0 J - N: REM RANDOMIZE ARRAY ROW
1 3 0 FOR I - 1 TO N: X - INT(RND J + 1): C(1) - D(X): J - J - 1
1 4 0 FOR K - X TO J: D(K) - D(K + 1): NEXT K: NEXT I
1 5 0 FOR R - 1 TO N: FOR C - 1 TO N: T - B(R) + C(C)
1 6 0 I F T > N THEN T - T - N
1 7 0 A$(R, C) - CHRf (6 4 + T): NEXT C: NEXT R
180 FOR L - 1 TO N: J - N
1 9 0 FOR I - 1 TO N: C (I) - I: NEXT I
2 0 0 FOR I - 1 TO N
2 1 0 X - INT(RND J + 1): B(1) - C(X): J - J - 1
2 2 0 FOR K - X TO J: C(K) - C(K + 1): NEXT K: NEXT I
2 3 0 T - 0: Cf - CHR$(L + 64)
2 4 0 FOR R - 1 T O N : T - T + 1
2 5 0 FOR C - 1 TO N: I F B(T) > 9 THEN Sf - " " ELSE Sf - " "
2 6 0 I F A$(R, C) - Cf THEN Af(R, C) - Af(R, C) + MID$(STRf(B(T)), 2) + Sf
2 7 0 NEXT C: NEXT R: NEXT L
2 8 0 FOR R - 1 TO N: FOR C - 1 TO N
2 9 0 PRINT Af(R, C); : NEXT C: PRINT : NEXT R

0.

L A T I N SQUARE WITH RANDOMIZED NON-REPEATED SUBSCRIPTS
ENTER NUMBER OF TREATMENTS? 1 0
ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE? I

Fig. 5. (A) Listing of B A S I C program used to create a Latin square with up to 26 letters per side
and 26 unique subscripts per letter. (B) Printed output of program on computer screen on an
IBM PC or compatible computer (output may differ due to differences in the random number

generator algorithm used by the version of B A S I C) .

The program first finds a general solution for a Greco-Latin square with an odd
number of letters per side of 3 or more. For example, for a 5 x 5 square, this is done by
beginning the first row with ABCDE. The last letter of the row, E, starts on the next row
down and arrangement of letters is subsequently ordered (EABCD). This pattern is
shifted for the third (DEABC) and all rows resulting in a Latin square. The same
procedure is done with numbers but in reverse (right to left) so that the first row is 54321
and the second row is 43215. The two Latin squares of letters and numbers are
superimposed and result in a Greco-Latin square. The algorithm does not work for
squares with sides with an even number of rows/columns.

By switching two of the columns one obtains another Greco-Latin square. Similarly,
two rows can be switched to get two different squares. This principle is then used to
switch at random various rows and columns to get many different Greco-Latin squares. It
was found that the number of random switches of rows or columns needed to be at least
as large as the number of rows/columns in order to effect a significant randomization of
the initial pattern. With a 4 x 4 square it is possible to make six different swaps of the
rows for a total of seven different squares. Also, six (N = 6) different swaps of the
columns allow a grand total of 1 + [EF,(j- 1)12= 37 different Greco-Latin squares
including the original one. For a 5 X 5 there are 101 squares, for a 7 X 7 there are 442

Randomization algorithms in B A S I C

A.

1 0 CLS : PRINT "GRECO-LATIN SQUAREn: DEFINT A-Z
2 0 INPUT "ENTER 4 OR AN ODD NUMBER OF TREATMENTS": N: R - N
30 I F N < 3 OR (N <> 4 AND INT(N / 2) - N / 2) OR N > 2 6 THEN 2 0
4 0 PRINT "ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM":
5 0 INPUT " SEQUENCE": RN: RN - RND(-RN)
6 0 REM FIND ONE SOLUTION TO A GRECO-LATIN SQUARE OF SIDE N
7 0 DIM A(N, N): D IM B(N, N): D IM A$(N, N): I F N - 4 THEN 1 2 0
8 0 FOR R - 1 TO N: FOR C - 1 TON: P - P + 1: A(R, C) - P
9 0 B(R, N + 1 - C) - P: I F C - N THEN P - P - 1
1 0 0 I F P - N THEN P - 0
1 1 0 NEXT C: NEXT R: GOT0 160: REM DATA FOR SIDE OF 4
1 2 0 DATA 1,1,2,2,3,3,4,4,2,4,1,3,4,2,3,1
1 3 0 DATA 3,2,4,1,1,4,2,3,4,3,3,4,2,1,1,2
1 4 0 FOR R - 1 TO N: FOR C - 1 TO N: READ A(R, C), B(R, C)
1 5 0 NEXT C: NEXT R
1 6 0 FOR W - 1 TO N: REM RANDOMIZE ROWS & COLUMNS N TIMES
1 7 0 RN - INT(RND * N) + 1: K - INT(RND * N) + 1
1 8 0 FOR C - 1 TO N: SWAP A(RN, C), A(K, C)
1 9 0 SWAP B(RN, C), B(K, C): NEXT C: REM ROWS SWAPPED
2 0 0 RN - INT(RND * N) + 1: K - INT(RND * N) + 1
2 1 0 FOR R - 1 TO N: SWAP A(R, RN), A(R, K)
2 2 0 SWAP B(R, RN), B(R, K): NEXT R: REM COLUMNS SWAPPED
2 3 0 NEXT W: REM END OF RANDOMIZATION OF ROWS AND COLUMNS
2 4 0 FOR R - 1 TO N: FOR C = 1 T O N
250 A$(R, C) - CHR$(A(R, C) + 64 + MID$(STR$(B(R, C)), 2)
260 A$(R, C - A$(R, C) + STRINGi(4 - LEN(A$(R, C)), 32)
270 PRINT A i (R , C): : NEXT C: PRINT : NEXT R

GRECO-LATIN SQUARE
ENTER 4 OR AN ODD NUMBER OF TREATMENTS? 7
ENTER A SPECIFIC NUMBER FOR A SPECIFIC RANDOM SEQUENCE? 1
G1 8 6 A7 C5 D4 F2 E3
D5 F3 E4 62 A1 C6 B7
E6 64 F 5 A3 B2 D7 C1
C4 E2 D3 F 1 67 B5 A6
B3 D l C2 E7 F 6 A4 6 5
A2 C7 B 1 D6 E5 63 F4
F7 A5 6 6 B4 C3 E l 0 2

Fig. 6. (A) Listing of B A S I C program used to create a Greco-Latin square of up to 26 letters per
side and subscripts per side. Both letters and subscripts form a Latin square and all cells have
unique combinations of letters and subscripts. (B) Printed output of program on computer screen
on an IBM PC or compatible computer (output may differ due to differences in the random

number generator algorithm used by the version of B A S I C) .

squares. The general algorithm does not work for even numbered sides, but a
Greco-Latin solution exists for a side of four as shown earlier [9]. This unique solution is
used with the row and column randomization algorithm to obtain the 37 possible
Greco-Latin squares.

Program output for a Greco-Latin square is shown in Fig. 6B. It can be supposed that
here one wanted to test the effects of seven pheromone blends each at seven dosages in
seven areas of the forest on seven days. The Greco-Latin square would allow a more
powerful analysis since all treatments and dosages were tested at each position and on
each day, although each position or day did not have identical treatmentsldosages.
Several texts discuss the advantages and drawbacks of using Latin and Greco-Latin
squares as well as the statistical analysis of variance [I, 3,4,6,8,9].

The random generator in QuickBASIC (Microsoft@) can generate up to 10 million
possible numbers and the sequence does not repeat for about 16.7 million selections, as
tested with the following BASIC lines:

10 A = RND(- 3):T= RND
20 C = C + l:R = RND:IF R<>T THEN 20 ELSE PRINT C

The advantage of computer generation of random numbers compared to the use of tables
is that the computer can be combined with specific algorithms for randomization and
sampling applications. The computer can process the algorithms at high speed, without
error, and output the results on paper via a printer. Printed paper copy can be obtained

in two ways, (1) by printing the screen with the 'Print Scrn' key and (2) by substituting
LPRINT statements for the PRINT ones shown in the figures.

The experimental designs presented here that employ a degree of uniform spacing
among treatments are more appropriate for use than traditional statistical analyses only
when there are logical or pragmatic reasons, as in the examples above. Thus it seems
advisable to consult a statistician when considering these specialized designs. A compiled
program version is available from the author (send a formatted disk and return mailer).

S U M M A R Y

Six algorithms implemented in the BASIC computer language are presented for use in
randomizing treatments and/or sampling during the design and implementation of
experiments. The convenience of the use of personal computers for generating random
numbers necessary for use in the algorithms is discussed. Methods for generation of
sampling plans and treatment protocol are described for blocks of grid cells with or
without separation of identical treatments in adjacent cells. True Latin squares or quasi-
Latin squares (in which a row or column may have a multiple number of the same
treatment), with or without identical treatment separation in adjacent cells (horizontally,
vertically, or both) are also described. Latin squares with randomized subscripts as well
as Greco-Latin squares can also be generated rapidly.
Acknowledgements-This work was supported by a research grant from the Swedish Agricultural and Forest
Research Council, SJFR. Olle Anderbrant and Fredrik Schlyter were helpful in the review of the manuscript.

R E F E R E N C E S

1. V. L. Anderson and R. A. McLean, Design of Experiments. Marcel Dekker, New York (1974).
2. W. G. Cochran, Sampling Techniques. Wiley, New York (1963).
3. W. G. Cochran and G. M. Cox, Experimental Designs. Wiley, New York (1957).
4. B. E. Cooper, Statistics for Experimentalists. Pergamon Press, London (1969).
5. D. R. Cox, Planning of Experiments. Wiley, New York (1958).
6. M. N. Das and N. C. Giri, Design and Analysis o f Experiments. Wiley, New Delhi (1979).
7. W. E. Deming, Some Theory of Sampling. Dover, New York (1950).
8. W. T. Federer, Experimental Design. MacMillan, New York (1955).
9. 0. Kempthorne, The Design and Analysis of Experiments. Wiley, New York (1952).

10. J. A. Byers, Basic algorithms for random sampling and treatment randomization, Comput. Biol. Med. 21,
69 (1991).

11. J. A. Byers, 0 . Anderbrant and I. Wfqvist, Effective attraction radius: a method for comparing species
attractants and determining densities of flying insects. I. chem. Ecol. 15,749 (1989).

12. T . L. Payne, I. E. Coster, I. V. Richerson, E. R. Hart, R. L. Hedden and L. I. Edson, Reducing variation
in field tests of behavioral chemicals for the southern pine beetle. I. Georgia Entomol. Soc. 13,85 (1978).

13. B. D. Ripley, Spatial Statistics. Wiley, New York (1981).
14. D. L. Wood, L. E. Browne, B. Ewing, K. Lindahl, W. D. Bedard, P. E. Tilden, K. Mori, G. B. Pitman

and P. R. Hughes, Western pine beetle: specificity among enantiomers of male and female components of
an attractant pheromone. Science 1%, 896 (1976).

About the Author-JOHN A. BYERS received his B.Sc. (1971) and M.Sc. (1973) in Entomology
from Colorado State University, and Ph.D. (1978) in Entomology from the University of
California at Berkeley. He is currently a Docent (Associate Professor) of Animal Ecology in the
Pheromone Research Group, Lund University, Sweden. His main research interests are in insect
behaviour and chemical ecology and in computer simulation of behavioral and ecological models.

